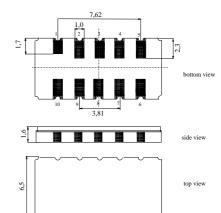


SAW Components

Data Sheet B3862

SAW Components B3862
Low-Loss Filter 51,00 MHz

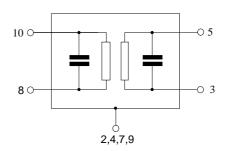

Data Sheet

Features

- IF filter for WCDMA
- Low insertion loss
- Ceramic SMD package

Terminals

Gold plated



Ceramic package DCC12A

Dimensions in mm, appr. weight 0,44 g

Pin configuration

10	Input
8	Input ground
5	Output
3	Output ground
2, 4, 7, 9	Case ground
1,6	Ground

Туре	Ordering code	Marking and Package according to	Packing according to
B3862	B39510-B3862-H510	C61157-A7-A94	F61074-V8163-Z000

Electrostatic Sensitive Device (ESD)

Maximum ratings

Operable temperature range	Τ	-40 / +85	°C
Storage temperature range	$T_{\rm stg}$	-40 / +85	°C
DC voltage	$V_{\rm DC}$	0	V
Source power	$P_{\rm s}$	10	dBm

SAW Components B3862

51,00 MHz **Low-Loss Filter**

Data Sheet

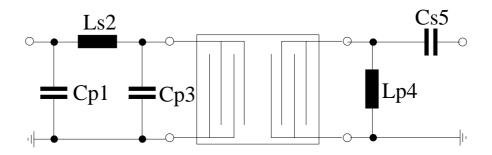
Characteristics

Operating temperature:

 $T = -10 \dots +85 \,^{\circ}\text{C}$ $Z_{\text{S}} = 50 \,\Omega$ and matching network $Z_{\text{L}} = 50 \,\Omega$ and matching network Terminating source impedance: Terminating load impedance:

		min.	typ.	max.	
Nominal frequency	f _N	_	51,00	_	MHz
Minimum insertion attenuation (including matching network)	$lpha_{\sf min}$	_	8,5	10,0	dB
Passband width					
$lpha_{rel} \leq$ 2 dE	B_{2dB}	_	2,4	_	MHz
$lpha_{rel} \leq 20 \ c$	B_{20dB}	_	3,5	3,84	MHz
Amplitude ripple (p-p) $f_{\rm N} \pm 1{,}00~{\rm I}$	Δα MHz	_	0,8	1,5	dB
Phase ripple (p-p) $\label{eq:fN} \textit{f}_{\text{N}} \pm 1{,}00$	Δφ MHz	_	5	10	0
Unit to Unit Phase Slope Variation $f_{\rm N} \pm 1{,}00$	Δφ _v MHz	_	± 1	± 5	0
Relative attenuation (relative to α_{min})	$lpha_{ m rel}$				
f _N ± 1,92 MHz f _N ± 10,0 MH		22	25	_	dB
$f_N \pm 10,0$ MHz $f_N \pm 20,0$ MH	z	30	60	_	dB
0,5 MHz 31,0 MH:	z	40	60	_	dB
71 MHz 160 MH:	z	40	45	_	dB
160 MHz 2200 MH	lz	20	30		dB
VSWR $f_{N} \pm 1.0 \text{ MH}$	łz	<u> </u>	1,5:1	2,3:1	
Temperature coefficient of frequency	<i>TC</i> _f	<u> </u>	- 18	_	ppm/K

¹⁾ Variation of absolute phase at each frequency point compared with mean value of each production lot. Additional constant offset for all frequency points of up to $\pm\,5\,^\circ$ is allowed.



SAW Components B3862

Low-Loss Filter 51,00 MHz

Data Sheet

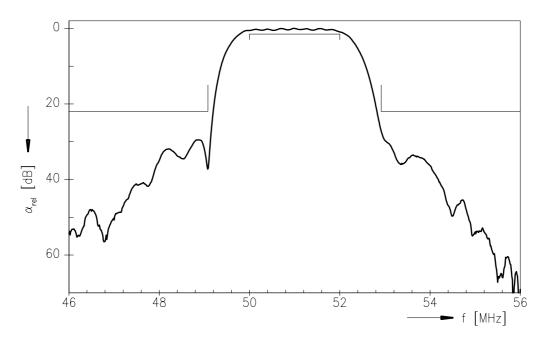
Matching network: (element values depend on PCB layout)

$$C_{p1} = 100 \text{ pF}$$

 $L_{s2} = 390 \text{ nH}$

$$C_{p3} = 1.8 \text{ pF}$$

 $L_{p4} = 180 \text{ nH}$


$$C_{s5} = 18 \text{ pF}$$


SAW Components B3862
Low-Loss Filter 51,00 MHz

Data Sheet

Transfer function

Transfer function (pass band)

SAW Components B3862
Low-Loss Filter 51,00 MHz

Data Sheet

Published by EPCOS AG Surface Acoustic Wave Components Division, SAW MC IS P.O. Box 80 17 09, 81617 Munich, GERMANY

© EPCOS AG 2002. Reproduction, publication and dissemination of this brochure and the information contained therein without EPCOS' prior express consent is prohibited.

Purchase orders are subject to the General Conditions for the Supply of Products and Services of the Electrical and Electronics Industry recommended by the ZVEI (German Electrical and Electronic Manufacturers' Association), unless otherwise agreed.

This brochure replaces the previous edition.

For questions on technology, prices and delivery please contact the Sales Offices of EPCOS AG or the international Representatives.

Due to technical requirements components may contain dangerous substances. For information on the type in question please also contact one of our Sales Offices.